A microfluidic model for organ-specific extravasation of circulating tumor cells.

نویسندگان

  • R Riahi
  • Y L Yang
  • H Kim
  • L Jiang
  • P K Wong
  • Y Zohar
چکیده

Circulating tumor cells (CTCs) are the principal vehicle for the spread of non-hematologic cancer disease from a primary tumor, involving extravasation of CTCs across blood vessel walls, to form secondary tumors in remote organs. Herein, a polydimethylsiloxane-based microfluidic system is developed and characterized for in vitro systematic studies of organ-specific extravasation of CTCs. The system recapitulates the two major aspects of the in vivo extravasation microenvironment: local signaling chemokine gradients in a vessel with an endothelial monolayer. The parameters controlling the locally stable chemokine gradients, flow rate, and initial chemokine concentration are investigated experimentally and numerically. The microchannel surface treatment effect on the confluency and adhesion of the endothelial monolayer under applied shear flow has also been characterized experimentally. Further, the conditions for driving a suspension of CTCs through the microfluidic system are discussed while simultaneously maintaining both the local chemokine gradients and the confluent endothelial monolayer. Finally, the microfluidic system is utilized to demonstrate extravasation of MDA-MB-231 cancer cells in the presence of CXCL12 chemokine gradients. Consistent with the hypothesis of organ-specific extravasation, control experiments are presented to substantiate the observation that the MDA-MB-231 cell migration is attributed to chemotaxis rather than a random process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A microfluidic 3D in vitro model for specificity of breast cancer metastasis to bone.

Cancer metastases arise following extravasation of circulating tumor cells with certain tumors exhibiting high organ specificity. Here, we developed a 3D microfluidic model to analyze the specificity of human breast cancer metastases to bone, recreating a vascularized osteo-cell conditioned microenvironment with human osteo-differentiated bone marrow-derived mesenchymal stem cells and endotheli...

متن کامل

In Vitro Study of Cancer Cell Extravasation in Microfluidic Platform

Cancer metastases arise from the cancer cells that disseminate from the primary tumor, intravasate into the vascular system and eventually transmigrate across the endothelium into to a secondary site through a process of extravasation. Microfluidic systems have a major advantage in studying cancer extravasation since they can mimic aspects of the 3D in vivo situation in a controlled environment...

متن کامل

A novel microfluidic model can mimic organ-specific metastasis of circulating tumor cells

A biomimetic microsystem might compensate costly and time-consuming animal metastatic models. Herein we developed a biomimetic microfluidic model to study cancer metastasis. Primary cells isolated from different organs were cultured on the microlfuidic model to represent individual organs. Breast and salivary gland cancer cells were driven to flow over primary cell culture chambers, mimicking d...

متن کامل

Human 3D vascularized organotypic microfluidic assays to study breast cancer cell extravasation.

A key aspect of cancer metastases is the tendency for specific cancer cells to home to defined subsets of secondary organs. Despite these known tendencies, the underlying mechanisms remain poorly understood. Here we develop a microfluidic 3D in vitro model to analyze organ-specific human breast cancer cell extravasation into bone- and muscle-mimicking microenvironments through a microvascular n...

متن کامل

Investigation of Tumor Cell Behaviors on a Vascular Microenvironment-Mimicking Microfluidic Chip

The extravasation of tumor cells is a key event in tumor metastasis. However, the mechanism underlying tumor cell extravasation remains unknown, mainly hindered by obstacles from the lack of complexity of biological tissues in conventional cell culture, and the costliness and ethical issues of in vivo experiments. Thus, a cheap, time and labor saving, and most of all, vascular microenvironment-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomicrofluidics

دوره 8 2  شماره 

صفحات  -

تاریخ انتشار 2014